9.1 Intro to Differential Equations

A differential equation is an equation involving derivatives.

A solution to a differential equation
is any function that satisfies the equation.

Entry Task:
Find $y=y(x)$ such that

$$
\frac{d y}{d x}-8 x=x^{2} \text { and } y(0)=5
$$

Check your final answer

Example

Consider the differential equation:

$$
\frac{d P}{d t}=2 P
$$

(a) Is $P(t)=8 e^{2 t}$ a solution?
(b) Is $P(t)=t^{3}$ a solution?
(c) Is $\mathrm{P}(\mathrm{t})=0$ a solution?

The general solution to

$$
\frac{d P}{d t}=2 P
$$

is

$$
P(t)=C e^{2 t}
$$

for any constant C .

Example: Consider the $2^{\text {nd }}$ order differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

(c) There is a sol'n that looks like $y=e^{r t}$.
Can you find a value of r that works?
(a) Is $y=e^{-2 t}$ a solution?
(b) Is $y=t e^{-t}$ a solution?

Application Notes:
$\frac{d y}{d t}=$ "instantaneous rate of change of y with respect to $t "$
" A is proportional to B " means
$A=k B$, where k is a constant.
In other words, $A / B=k$.

1. Natural Unrestricted population

Assumption: "The rate of growth of a population is proportional to the size of the population."
$\mathrm{P}(\mathrm{t})=$ the population at year t,
$\frac{d P}{d t}=$ the rate of change of the population with respect to time (i.e. rate of growth).

So the assumption is equivalent to

$$
\frac{d P}{d t}=k P
$$

for some constant k.

2. Newton's Law of Cooling

Assumption: "The rate of cooling is proportional to the temperature difference between the object and its surroundings."
$T_{s}=$ constant temp. of surroundings
$T(t)=$ temp. of the object at time t,
$\frac{d T}{d t}=$ rate of change of temp. with respect to time (i.e. cooling rate).
$T-T_{S}=$ temp. difference between object and surroundings.

Newton's Law of Cooling is equivalent to

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

for some constant k.

3. A Mixing Problem

Assume a 50 gallon vat is initially full of pure water.

A salt water mixture is being dumped into the vat at $2 \mathrm{gal} / \mathrm{min}$ and this mixture contains 3 grams of salt per gal. The vat is thoroughly mixed together.

At the same time, the mixture is coming out of the vat at $2 \mathrm{gal} / \mathrm{min}$.

Let $\mathrm{y}(\mathrm{t})=$ grams of salt in vat at time t. $\frac{y(t)}{50}=$ salt per gallon in vat at time, t. $\frac{d y}{d t}=\quad$ the rate $(\mathrm{g} / \mathrm{min})$ at which salt is changing with respect to time.

Thus,

RATE IN $=\left(3 \frac{\mathrm{~g}}{\mathrm{gal}}\right)\left(2 \frac{\mathrm{gal}}{\mathrm{min}}\right)=6 \frac{\mathrm{~g}}{\mathrm{~min}}$
RATE OUT $=\left(\frac{y}{50} \frac{\mathrm{~g}}{\mathrm{gal}}\right)\left(2 \frac{\mathrm{gal}}{\mathrm{min}}\right)=\frac{y}{25} \frac{\mathrm{~g}}{\min }$

Thus,

$$
\frac{d y}{d t}=6-\frac{y}{25}
$$

4. All motion problems!

Consider an object of mass $m \mathrm{~kg}$ moving up and down on a straight line.

Let $\mathrm{y}(\mathrm{t})=$ 'height at time t^{\prime}
$\frac{d y}{d t}=$ 'velocity at time t^{\prime}
$\frac{d^{2} y}{d t^{2}}=$ 'acceleration at time t^{\prime}
Newton's $2^{\text {nd }}$ Law says:

$$
(\text { mass })(\text { acceleration })=\text { Force }
$$

$m \frac{d^{2} y}{d t^{2}}=$ sum of forces on the object

Only taking into account gravity we get

$$
m \frac{d^{2} y}{d t^{2}}=-m g
$$

Now consider gravity and air resistance.
One of the most common models is to assume the force due to air resistance is proportional to velocity and in the opposite direction of velocity.
Then we get

$$
m \frac{d^{2} y}{d t^{2}}=-m g-k \frac{d y}{d t}
$$

5. Many, many others:

Example:

A common assumption for melting snow/ice is "the rate at which the object is melting (rate of change of volume) is proportional to the exposed surface area."

Consider a melting snowball:

$$
V=\frac{4}{3} \pi r^{3}, \quad S=4 \pi r^{2}
$$

Write down the differential equation for r.

